N-TİPİ VE P-TİPİ YARI İLETKENLER

Yarı iletken malzemeler, akımı iyi iletmezler. Aslında ne iyi bir iletken, nede iyi bir yalıtkandırlar. Çünkü valans bandındaki boşlukların ve ilettim bandındaki serbest elektronların sayısı sınırlıdır. Saf silisyum veya germanyum’un mutlaka serbest elektron veya boşluk sayısı artırılarak iletkenliği ayarlanmalıdır. İletkenliği ayarlanabilen silisyum veya germanyum, elektronik devre elemanlarının yapımında
kullanılır. Germanyum veya silisyumun iletkenliği ise ancak saf malzemeye katkı maddesi eklenmesi ile sağlanır.

Katkı maddesi eklenerek oluşturulan iki temel yarı iletken materyal vardır. Bunlara; N-tipi madde ve P-tipi madde denir. Elektronik devre elemanlarının üretiminde bu iki madde kullanılır.

Katkı İşlemi (Doping)

Silisyum ve germanyumun iletkenliği kontrollü olarak artırılabilir. İletkenliği kontrollü olarak artırmak için saf yarı iletken malzemeye katkı maddesi eklenir. Bu işleme “doping” denir.

Akım taşıyıcılarının (elektron veya boşluk) sayısının artırılması malzemenin iletkenliğini, azaltılması ise malzemenin direnci artırır. Her iki doping olayının sonucunda N-tipi veya P-tipi madde oluşur.

Valans Elektronları

Elektronlar çekirdekten uzaktadır ve çekirdekten ayrılma eğilimindedir. Çekirdek elektronun bu ayrılma eğilimini dengeleyecek güçtedir. Çünkü elektron negatif yüklü, çekirdek pozitif yüklüdür.

Bir atomun en dıştaki kabuğu, en yüksek enerji seviyeli elektronlara sahiptir. Bu durum onu atomdan ayrılmaya daha eğilimli hale getirir. Valans (atomun değerini ayarlayan elektronlar) elektronları kimyasal reaksiyona ve malzemenin yapısına katkı sağlar.
Bir atomun en dış kabuğundaki elektronlar, çekirdek etrafında simetrik olarak hareket ederler ve kendi aralarında bir bağ oluştururlar. Bu bağa “kovelant bağ” denir. Atomun en dış kabuğundaki elektronlara ise “valans elektron” adı verilir. Komşu atomların en dış kabuklarındaki elektronlar (valans elektronlar) kendi aralarında valans çiftleri oluştururlar.

İyonizasyon

Bir atom, Dışarıdan bir etkiyle (ısı, ışık) valans elektronunu kaybetme işlemi “İYONİZASYON” olarak bilinir ve atom pozitif şarj ile yüklenmiş olur ve pozitif iyon olarak adlandırılır.

İyonizasyon ile ilgili görsel sonucu

Örneğin; hidrojenin kimyasal sembolü H’dır. Hidrojenin valans elektronları kaybedildiğinde pozitif iyon adını alır ve H+ olarak gösterilir. Atomdan kaçan valans elektronları “serbest elektron” olarak adlandırılır .  Serbest elektronlar, nötr hidrojen atomunun en dış kabuğuna doğru akar. Atom negatif yük ile yüklendiğinde (elektronların prontonlardan fazla olması) negatif iyon diye adlandırılırlar ve H- olarak gösterilirler.

Kovelant Bağ

Katı materyaller, kristal bir yapı oluştururlar. Slikon, kristallerden oluşmuş bir materyaldir.Kristal yapı içerisindeki atomlar ise birbirlerine kovalent bağ denilen bağlarla bağlanırlar. Kovelant bağ, bir atomun valans elektronlarının birbirleri ile etkileşim oluşturması sonucu meydana gelir.
Her silisyum atomu, kendisine komşu diğer 4 atomun valans elektronlarını kullanarak bir yapı oluşturur. Bu yapıda her atom, 8 valans elektronunun oluşturduğu etki sayesinde kimyasal kararlılığı sağlar. Her bir silisyum atomunun valans elektronu, komşu silisyum atomunun valans elektronu ile paylaşımı sonucunda kovalent bağ oluşur. Bu durum; bir atomun diğer atom tarafından tutulmasını sağlar. Böylece paylaşılan her elektron birbirine çok yakın elektronların bir arada bulunmasını ve birbirlerini eşit miktarda çekmesini sağlar. Germanyumun kovalent bağıda benzerdir.

N-Tipi Yarı iletken

Saf silisyumun iletkenlik bandındaki deliklerinin artırılması atomlara katkı maddesi ekleyerek yapılır. Bu atomlar, 5-değerli valans elektronları olan arsenik (As), fosfor (P), bizmut (Bi) veya antimon’dur. Silisyuma katkı maddesi olarak 5 valans elektrona sahip fosfor belli bir oranda eklendiğinde, diğer silisyum atomları ile nasıl bir kovelent bağ oluşturulduğu şekil-1.3’te gösterilmiştir. Fosfor atomunun 4 valans elektronu, silisyumun 4 valans elektronu ile kovalent bağ oluşturur. Fosfor’un 1 valans elektronu açıkta kalır ve ayrılır. Bu açıkta kalan elektron iletkenliği artırır. Çünkü herhangi bir atoma bağlı değildir. İletkenlik, elektron sayıları ile kontrol edilebilir. Bu ise silisyuma eklenen atomların sayısı ile olur. Katkı sonucu oluşturulan bu iletkenlik elektronu, valans bandında bir boşluk oluşturmaz.
“
Akım taşıyıcılarının çoğunluğu elektron olan, silisyum veya germanyum maddesine Ntipi yarıiletken malzeme denir. N-tipi malzemede elektronlar, çoğunluk akım taşıyıcıları diye adlandırılır. Böylece N-tipi malzemede akım taşıyıcıları elektronlardır. Buna rağmen ısı ile oluşturulan birkaç tane elektron boşluk çiftleri de vardır. Bu boşluklar 5-değerli katkı maddesi ile oluşturulmamışlardır. N-tipi malzemede boşluklar azınlık taşıyıcıları olarak adlandırılır.

P-Tipi Yarı iletken

Saf silisyum atomu içerisine, 3 valans elektrona sahip (3-değerli) atomların belli bir oranda eklenmesi ile yeni bir kristal yapı oluşur. Bu yeni kristal yapıda delik (boşluk) sayısı artırılmış olur. 3 valans elektrona sahip atomlara örnek olarak; alüminyum (Al), Bor (B) ve Galyum (Ga) elementlerini verebiliriz. Örneğin; saf silisyum içerisine belli bir oranda bor katılırsa; bor elementinin 3 valans elektronu, silisyumun 3 valans elektronu ile ortak kovalent bağ oluşturur. Fakat silisyumun 1 valans elektronu ortak valans bağı oluşturamaz. Bu durumda 1 elektron noksanlığı meydana gelir. Buna “boşluk” veya “delik=hole” denir. Silisyuma eklenen katkı miktarı ile boşlukların sayısı kontrol edilebilir. Bu yöntemle elde edilen yeni malzemeye P tipi yarıiletken malzeme denir. Çünkü boşluklar pozitif yüklüdür. Dolayısı ile P-tipi malzemede çoğunluk akım taşıcıları boşluklardır.
Elektronlar ise P tipi malzemede azınlık akım taşıyıcılarıdır. P-tipi malzemede bir kaç adet serbest elektronda oluşmuştur. Bunlar ısı ile oluşan boşluk çifti esnasında meydana gelmiştir. Bu serbest elektronlar, silisyuma yapılan katkı esnasında oluşturulamazlar. Elektronlar P-tipi malzemede azınlık akım taşıyıcılarıdır.
“

PN BİRLEŞİMİ

Silisyum veya Germanyum kristaline yeterli oranda katkı maddeleri eklenerek, P-tipi ve N-tipi maddeler oluşturulmuştu. Bu maddeler yalın halde elektriksel işlevleri yerine getiremezler. P ve N tipi malzeme bir arada kullanılırsa, bu birleşime PN birleşimi (junction) veya PN eklemi denir. PN birleşimi; elektronik endüstrisinde kullanılan diyot, transistör v.b devre elemanlarının yapımında kullanılır.
Şekil-1.5.(a)‘da yarısı P-tipi, diğer yarısı N tipi malzemeden oluşan iki bölümlü bir silisyum parçasını göstermektedir. Bu temel yapı biçimine “yarı iletken diyot” denir. N bölgesinde daha çok serbest elektron bulunur. Bunlar akım taşıyıcıcısı olarak görev yaparlar ve “çoğunluk akım taşıyıcısı” olarak adlandırılırlar. Bu bölgede ayrıca ısı etkisi ile oluşturulan birkaç boşluk (delik=hole) bulunur. Bunlara ise “azınlık akım taşıyıcıları” adı verilir.
“
P bölgesi ise çok sayıda boşluklar (delik=hole) içerir. Bunlara “çoğunluk akım taşıyıcıları” denir. Bu bölgede ısı etkisi ile oluşan birkaç serbest elektronda bulunur. Bunlara ise “azınlık akım taşıyıcıları” denir. Bu durum şekil-1.5.(b)‘de gösterilmiştir. PN birleşimi elektronik endüstrisinde kullanılan diyotların, transistörlerin ve diğer katkı hal devrelerinin temelini oluşturur.

PN BİRLEŞİMİNİN POLARMALANMASI

İleri Yönde Polarma (Forward Bias)

İleri yönde polarma; yarıiletken bir devre elemanının uçlarına uygulanan DC gerilimin yönü ile ilgilidir. PN birleşiminden akım akmasını sağlayacak şekilde yapılan polarmadır. Şekil-1.6‘de bir diyoda ileri yönde polarma sağlayacak bağlantı görülmektedir.
“
İleri yönde polarma şöyle çalışır. Bataryanın negatif ucu N bölgesine (Katot olarak adlandırılır), pozitif ucu ise P bölgesine (Anot olarak adlandırılır) bağlanmıştır.
Bataryanın negatif terminali, N bölgesindeki iletkenlik elektronlarını birleşim bölgesine doğru iter. Aynı anda pozitif terminal, P bölgesindeki oyukları birleşim bölgesine iter. Uygulanan polarma gerilimi yeterli seviyeye ulaşınca; N bölgesindeki elektronların ve P bölgesindeki oyukların engel bölgesini aşmasını sağlar.
N bölgesinden ayrılan elektronlara karşılık, bataryanın negatif ucundan çok sayıda elektron girmesini sağlar. Böylece N bölgesinde iletkenlik elektronlarının hareketi (çoğunluk akım taşıyıcıları) eklem bölgesine doğrudur.
Karşıya geçen iletkenlik elektronları, P bölgesinde boşluklar ile birleşirler. Valans elektronları boşluklara taşınır ve boşluklar ise pozitif anot bölgesine taşınır. Valans elektronlarının boşluklarla birleşme işlemi PN uçlarına voltaj uygulandığı sürece devam eder ve devamlı bir “akım” meydana gelir. Bu durum şekil-1.7 ’ de resmedilmiştir. Şekilde ileri yönde bayaslanan diyodtaki elektron akışı görülmektedir.
“

İleri Polarmada Gerilim Seddinin Etkisi

PN birleşiminde meydana gelen gerilim seddi, Silisyumda 0.7V, germanyumda ise 0.3V civarındadır. Polarma geriliminin potansiyeli bu değere ulaştığında, PN birleşiminde iletim başlar. PN uçlarına uygulanan gerilim, diyodu bir kez iletime geçirdikten sonra gerilim seddi küçülür. Akım akışı devam eder. Bu akıma ileri yön akımı If denir. If akımı P ve N bölgesinin direncine bağlı olarak çok az değişir. Bu bölgenin direnci (ileri yöndeki direnç) genellikle küçüktür ve küçük bir gerilim kaybına sebep olur.

Ters Polarma (Revrese Bias)

Ters kutuplamada bataryanın negatif ucu P bölgesine, pozitif ucu ise N bölgesine bağlanmıştır. Bu durum şekil-1.8‘de gösterilmiştir. Ters polarmada PN birleşiminden akım akmaz. ataryanın negatif ucu, PN bölgesindeki boşlukları kendine doğru çeker. Pozitif ucu ise PN bölgesindeki elektronları kendine doğru çeker ve bu arada (deplesyon bölgesi) yalıtkan katman genişler. N bölgesinde daha çok pozitif iyonlar, P bölgesinde ise daha çok negatif iyonlar oluşturulur.
“
Yalıtkan (deplesyon) katmandaki potansiyel farkı harici bayas gerilimine eşit oluncaya kadar genişler. Bu noktada boşlukların ve elektronların hareketi durur. Birleşimden çoğunluk akım taşıyıcılarının harekete başlaması (transient ) akımı diye adlandırılır. Bu ise ters kutuplama yapıldığında çok kısa bir anda akan bir akımdır.
“
Diyot ters kutuplandığında engel katmanının yalıtkanlığı artacak ve her iki taraftaki iyonlar şarj olacaktır. Bu durum kapasitif bir etki yaratır. Ters kutuplama gerilimi arttıkça engel katmanı genişler. Bu arada kapasitans’da artacaktır. Bu durum, deplesyon katmanının kapasitansı diye bilinir ve bu durum pratik kolaylıklar sağlar.

Azınlık Akımı

Şimdiye kadar öğrendiğimize göre; diyoda ters gerilim uygulandığında çoğunluk akım çabucak sıfır olur. Ancak ters kutuplama da bile çok az bir azınlık akımı mevcut olacaktır. Bu ters akım germanyumda, silisyum‘a göre daha fazladır. Bu akım silisyum için mikro amper veya nano amperler mertebesindedir. Dolayısı ile ısı ile oluşan elektron boşluk çifti ise minimum seviyesindedir. Harici ters gerilim; uygulanırken bazı elektronlar PN birleşimini geçecektir. Ters akım aynı zamanda birleşimin ısısına ve ters kutlama geriliminin miktarına bağlıdır dolayısı ile ısının artması ters akımı da artıracaktır.

Ters Yönde Kırılma

Eğer dışarıdan uygulanan ters polarma gerilimi aşırı derecede artırılırsa çığ kırılması meydana gelir. Şimdi bu ne demektir? Azınlık akım taşıyıcıları olan iletkenlik bandı elektronlar dışarıdan uygulanan ters gerilim kaynağının etkisi ile P bölgesine itilirler. Bu esnada valans elektronları iletkenlik bandına doğru hareket ederler. Bu anda iki tane iletkenlik bandı elektronu mevcuttur. Her biri bir atomda bulunan bu elektronlar; valans bandından, iletkenlik bandına hareket eder. İletkenlik bandı elektronlarının hızla çoğalması olayı, çığ etkisi olarak bilinir. Sonuç olarak büyük bir ters akım akar. Çoğu diyotlar genelde ters kırılma bölgesinde çalışmazlar. Çünkü hasar görebilirler. Bununla birlikte bazı diyotlar sırf ters yönde çalışacak yönde yapılmışlardır. Bunlara “Zener Diyot” adı verilir.

Benzer Yazılar

YAZAR : Admin

Elektronik Mühendisi / E.Üni. Kalibrasyon Lab. Sorumlusu / Biyomedikal Kalibrasyon Laboratuvarı Sorumlu Müdürü (Sağ.Bak.) / X-Işınlı Görüntüleme Sistemleri Test Kontrol ve Kalibrasyon Uzmanı (Sağ.Bak.) / Ultrason-Doppler Sistemleri Test Kontrol ve Kalibrasyon Uzmanı (Sağ.Bak.) - Hatalı veya kaldırılmasını istediğiniz sayfaları diyot.net@gmail.com bildirin

BU YAZIYI DA İNCELEDİNİZ Mİ ?

İletken, Yalıtkan ve Yarı İletkenler

Yeryüzündeki bütün maddeler, atom ‘lar dan oluşmuştur. Atom ise ortada bir çekirdek ve bunun etrafındaki …

Bir cevap yazın