Diyot Katalog Bilgileri

Is ( Sızıntı Akımı )

Diyot ters polarize edilirse yani anotuna(-) katotuna(+) gerilim uygulanırsa yalıtkan olur ve üzerinden akım geçişine izin vermez.ancak azınlık akım taşıyıcıları nedeniyle değeri çok küçük (µA kadar) ve ihmal edilebilir bir ters yön akımı akar.Bu akıma sızıntı akımı denir.
Ters polarmada diyotlara uygulanan gerilim yükseltilirse eleman delinebilir (bozulur).
Örnek olarak 1n4001 diyot özellikleri ( 1A/50V ) incelendiğinde ters yönde uygulanan gerilime dayanabileceği üst değer 50V’ tur yani bu diyot 50 volttan fazla ters gerilimde delinerek özelliğini kaybeder.
Diyotlar ters polarıldığında sızıntı akımının miktarı sıcaklığa, uygulanan gerilime, yarı iletkenin cinsine göre değişir.
Örnek olarak germanyum dedektör diyodundan
5 volt altında, 25ºC sıcaklıkta 0,8 mA, 60ºC’de 5 mA, 100º C’de 50 mA sızıntı akımı geçtiği görülür.

PIV Voltajı

İmal edilen her diyotun yapısına bağlı olarak uygulanabilecek maksimum ters polarma gerilimi, çalışma sıcaklık bandı imal edilence hazırlanan kataloglarda belirtilmiştir. Bu değerler kesinlikle aşılmamalıdır.
Bu açıklamalardan sonra diyotun tanımını daha açık olarak şu şekilde yapabiliriz: Diyot doğru polarma edildiğinde üzerinden akım geçişine izin veren ters polarma edildiğinde üzerinden akım geçişine izin vermeyen elektronik devre elemanı olarak tanımlayabiliriz.
Diyotun ters polarma geriliminin artırılmasıyla bir değerden sonra iletime geçtiği noktaya diyotun ters yön devrilme noktası adı verilir. Bazı diyotlar (Zener diyot, foto diyot, varikap diyot ) ters yön devrilme noktasında çalıştırılır.

Sıcaklık Etkisi

Üretici firmalar diyodun karakteristik değerlerini genellikle 25 C oda sıcaklığı için verirler. Diyot’un çalışma ortamı ısısı, oda sıcaklığından farklı değerlerde ise diyot öngeriliminde ve sızıntı akımında bir miktar değişime neden olur.
• Diyot öngerilimi VF; her 10C’lik ısı artışında yaklaşık 2.3mV civarında azalır.
• Diyot sızıntı akımı I0; her 100C’lik ısı artışında yaklaşık iki kat olur.
Diyot’un ısı değişimine karşı gösterdiği duyarlılık oldukça önemlidir. Örneğin bu
duyarlılıktan yararlanılarak pek çok endüstriyel ısı ölçümünde ve kontrolünde sensör olarak diyot kullanılır.
Germanyum güç diyodunun maksimum çalışma sıcaklığı 90ºC olup silisyum diyotların ise maksimum dayanma sıcaklığı 175ºC civarındadır. Silisyum güç diyotları yüksek sıcaklıklara dayanabildiği için üzerinden yüksek akım geçirilebilir. Diyotların gövde sıcaklığının yükselmesine elemanın içinde doğan ısı sebep olur.
Diyotta meydana gelen ısı, akımla doğru orantılı olarak artar. Diyotlar alüminyum plaka, vantilatör (fan) vb. ile soğutulursa yüksek sıcaklıklarda dayanma gücü artar. Bu nedenle güç diyotları soğutucu plaka üzerine monte edilir. Diyotlarda iki şeye dikkat edilmelidir. Aksi takdirde diyot bozulur (Kısa devre olur.)

  • Ters dayanma geriliminin üzerine çıkılmamalıdır.
  • Maksimum taşıma akımından daha fazla akım çekilmemelidir.

Doğrultucu diyotların yüksek akımlı olanlarına güç diyotları denir. Güç diyotlarının çoğu daha yüksek akım ve sıcaklık değerlerinden dolayı silisyumdan yapılmaktadır. Diyotların akım kapasitesi diyotları paralel bağlayarak ters tepe dayanma gerilimleri ise diyotları seri bağlayarak artırabilir.

Diyot Direnci

Diyot’un elektriksel olarak direnci; diyot uçlarındaki gerilimle diyot üzerinden geçen akımın oranına göre tayin edilir. Diyot direnci, karakteristiğinde görüldüğü gibi doğrusal değildir. Doğru polarma altında ve iletim halindeyken, direnci minimum 10Ω civarındadır. Ters polarma altında ve kesimdeyken ise 10MΩ-100MΩ arasındadır. Diyodun doğru akım altında gösterdiği direnç değerine “statik direnç” denir. Statik direnç (rs) aşağıdaki gibi formüle edilir.
diyot
Alternatif akım altında gösterdiği direnç değerine “dinamik direnç” denir. Dinamik direnç (rD) aşağıdaki gibi formüle edilir.
diyot
Diyotlarda; dinamik veya statik direnç değerlerinin hesaplanmasında diyot karakteristiği kullanılır. Şekilde silisyum bir diyodun ileri yön karakteristiği verilmiştir.
diyot
Statik ve dinamik diyot dirençlerinin belirlenip formüle edilmesinde şekilde görülen diyot karakteristiğinden yararlanılır. Şekilde görülen karakteristikte değişim noktaları Q1, Q2 ve Q3 olarak işaretlenmiştir. Örneğin Q1 ve Q2 noktalarında diyot’un statik direnci;
Diyot
olarak bulunur. Diyot’un dinamik direnci ise, akım ve gerilimin değişmesi ile oluşan
direnç değeridir. Örneğin Q2 noktasındaki dinamik direnç değerini bulmak istersek, Q2 noktasındaki değişimin (Q1 .. Q3 değişimi gibi) küçük bir değişimini almamız gerekir.
Diyot
Elde edilen bu eşitlik ters polarmada da kullanılabilir.

Maksimum Ön Akım

Doğrultmaç ve sinyal diyotları, silisyum ve germanyum gibi yarı iletkenler ile yapılır. Bir P tipi ve N tipi yarı iletken birleştirilerek diyot imalatı yapılır. “D” harfi ile gösterilir. Germanyum diyotlar anahtarlama, sinyal ve dedektör yapımı olarak kullanılır. İletime geçme gerilimleri 0,2-0,3 Volt arasındadır. Silisyum diyotlar ise doğrultma devrelerinde (AC’ yi DC’ ye çevirmek için) kullanılır. İletime geçme gerilimleri 0,6-0,7 V arasındadır. Diyoda ters polarizasyonda zamanla artan bir gerilim verilirse belli bir zaman sonra diyot yanar, delinir veya kısa devre olur. Bu durumda diyottan çok büyük akım geçmeye başlar.

Ters Tepe Voltajı

Diyotların çoğu ters polarmanın aşırı artırılması halinde bozulacağından bu noktada (dayanma gerilimine yakın) çalıştırılmaz. 50 volta kadar olan ters gerilimlere dayanan 1N4001 diyot, en çok 40 voltluk devrede kullanılır. 50 voltun üzerindeki bir gerilim altında çalışan devre de ise diyot firmaları tarafından üretilen 1N4002 diyot veya başka bir model diyot seçilir. Diyot fiyatları da modeline ve firmasına göre farklılık gösterir.

Güç Harcaması

Yüksek güçlü DC elde etmek amacı için kullanılan bu tip diyotlar soğutucu ile beraber kullanılmalıdır. Uygulamada 400 ampere kadar akım taşıyan ve 4000 volta kadar çalışma gerilimi olan diyotlar vardır. Yüksek güçlü diyotlar akü şarj cihazları, elektroliz sistemleri, kaynak makineleri vs. yerlerde kullanılır.

Frekans

Germanyum tipi sinyal diyotları lojik (sayısal) devre elemanı veya radyo frekans (RF) devrelerinde sinyal ayırıcı olarak kullanılır. Başka bir ifade ile sinyal diyotları, yüksek frekanslarda çalışmaya duyarlı olmalarından dolayı  düşük gerilim ve akımlarda da çalışabilirler.

Diyotların Seri Bağlanması


Ters dayanma gerilimi daha yüksek diyot elde etmek için seri bağlama yapılır.
Örnek olarak 100 voltluk devre için ters dayanma gerilimi 50 volt olan 2 adet 1N4001 diyot seri bağlandığı zaman 100 volta dayanan  diyot elde edilir. Birden fazla diyodun seri bağlanması ile elde edilmiş elemanlara ise yüksek gerilim diyodu denir.

Diyotların Paralel Bağlanması


Yüksek akımlı diyot elde etmek için diyotlar paralel bağlanır. Fakat bu metod sağlıklı değildir. Üretim hatalarından dolayı diyotlar aynı özellikte yapılamaz. Bu sebeple diyotlardan biri bozulursa diğer diyotlardan geçen akımın artarak diyotların da bozulmasına sebep olur. O sebeple kataloglardan uygun diyot seçilerek kullanılır.

Yük Doğrusu ve Çalışma Noktası

Diyot, direnç ve DC kaynaktan oluşan basit bir devre şekilde verilmiştir. Devrede diyot doğru yönde polarmalandırılmıştır.
diyot
Diyot ideal kabul edilirse devreden akacak akım miktarı;
Diyot
olacağı açıktır. Gerçek bir diyot kullanıldığında ise; devreden akacak I akımı miktarına bağlı olarak diyot uçlarında VD ile belirlenen bir diyot öngerilimi oluışacaktır. Bu gerilim değeri lineer değildir. Bu gerilim değerinin;
diyot
olacağı açıktır. Ayrıca devreden akan akacak olan ID akımı değerinin VDD gerilimine bağlı olarak da çeşitli değerler alacağı açıktır. Çeşitli VDD değerleri veya IF değerleri için, diyot ön gerilimi VD’nin alabileceği değerler diyot karakteristiği kullanılarak bulunabilir. VDD geriliminin çeşitli değerleri için devreden akacak olan IF akım değerleri bulunup karakteristik üzerinde işaretlenir ve kesişim noktaları birleştirilirse şekilde görülen eğri elde dilir. Bu eğriye yük doğrusu denilir.
Yük doğrusu çizimi için;
IF=0 için VF=VDD (Diyot yalıtkan)
VF=0 için IF=VDD/R (Diyot iletken)
Bulunan bu değerler karakteristik üzerindeki koordinatlara işaretlenir. İşaretlenen noktalar karakteristik üzerinde birleştirilirse yük doğrusu çizilmiş olur. Bu durum şekil üzerinde gösterilmiştir. Diyot karakteristik eğrisinin yük çizgisini kestiği nokta Q çalışma noktası olarak bilinir.
Yük çizgisinin eğimi ise -1/R’dir.
Şekilde verilen devreye bağlı olarak yük doğrusu bir defa çıkarıldıktan sonra VDD’nin herhangi bir değeri için akacak akım miktarı ve buna bağlı olarak R direnci uçlarında oluşabilecek gerilim değeri kolaylıkla bulunabilir. Yük doğrusu ve çalışma noktasının tayini; diyot’u özellikle hassas kullanımlarda duyarlı ve pratik çalışma sağlar.

YAZAR : Admin

Elektronik Mühendisi X-Işınlı Görüntüleme Sistemleri Test Kontrol ve Kalibrasyon Uzmanı (Sağ.Bak.)

BU YAZIYI DA İNCELEDİNİZ Mİ ?

Elektrik Elektronik Mühendisliği öğrencilerine tavsiyeler

Elektrik Elektronik Mühendisi adayı arkadaşlar (  Tekniker ve Teknisyen arkadaşlarım bunlar sizin içinde geçerli ) …

Raspberry Pi 4 B

Raspberry Pi 4, bir önceki model olan Raspberry Pi 3B+ üzerine oldukça fazla yenilik ile …

Bir cevap yazın