Fiber Optik Kablo
Güncelleme 23/01/2024
Fiber Optik Nedir ?
Fiber Optik Kablolar Işığı Nasıl İletir ?
Fiber optik, insanın saç teli kalınlığında ve çok hassas üretilmiş saf bir cam ip üzerinden ışığın iletilmesi prensibiyle çalışan bir sistemdir. Bu şekilde üretilmiş kabloların tercih edilmesinin en büyük sebebi, çevresel şartların ağır olduğu; nemli, rutubetli, elektriksel alan parazitlerinin yoğun olduğu yerlerden etkilenmemesi ve her zaman stabil bir bağlantı sunmasıdır. Fiber optikkablolar, iletimi ışık hızıyla yani saniyede 300 bin km’lik hızla gerçekleştirirler. Bu yönleri sebebiyle uzak mesafelere veri aktarımı için tasarlanmışlardır.
Fiber optik bir kablo kesiti
- Merkez – Işığın hareket ettiği ince cam tabaka
- Cam Örtü – Merkezin dışını saran optik malzemeden üretilmiş, merkezden yasıyan ışığı tekrar merkeze geri gönderen kısım
- Kılıf – Kabloyu darbelere ve neme karşı koruyan dış katman
Yüzlerce hatta binlerce optik fiberden oluşan bu kablolar, merkez çaplarına, yapıldıkları malzemeye ve ışığın kırılma şekline göre ikiye ayrılırlar.
1. Tekil Modlu Fiberler: Yaklaşık 9 mikronluk çapa sahip olan ince merkezli kablolardır ve 1300 ile 1550 nanometre arasında dalga boyu değerine sahip kızılötesi lazer ışığını iletirler. Bu kablo tipi genellikle veri kaybının daha az olması istenen yerlerde kullanılır.
2. Çoğul Modlu Fiberler: Yaklaşık 62.5 mikronluk çapa sahip olanlardır ve 850 ile 1300 nanometre arasında dalgaboyu değerine sahip kızılötesi lazer ışığını iletirler.Üretim maliyeti daha uygun olduğundanen çok kullanılan kablo türüdür. Kayıp miktarı tekil modlu kablolara göre daha fazladır.
Bazı fiber kablolar ise plastikten üretilmiştir ve 1mm’ye varan merkeze sahiptirler. Bu kablolar 650 nanometre dalgaboyuna sahip görülebilir kırmızı ışığı iletirler.
Fiber Optik Kablolar Işığı Nasıl İletirler?
Lazerden gönderilen ışın demeti ilk başta doğrusal bir yol izler. İlk başta ışık sinyali 1 ve 2 olarak çıkan alt – üst sınır ışınları şekilde görüldüğü gibi kablonun kıvrıldığı noktalarda; ışık cam örtüye çarpıp geri yansır bu şekilde yansıya yansıya merkezdeki yoluna yavaşlayarak ve bir miktar kayba uğrayarak da olsa devam ederler. Bu nedenledir ki, fiber kabloların fazla kıvrım yapmadan genellikle düz bir yol izlemesi, veri iletim hızı ve kalitesi açısından önemlidir. Cam örtü tabakası ışığı kesinlikle absorbe etmez ve neredeyse tam olarak yansıtır bu da bilginin kayıpsız şekilde ulaşması için çok önemli bir noktadır.
Fiber optik kablolar kullanım yeri ve şartlarına bağlı olarak çelik zırh ya da jel tabakası gibi başka koruyucu ve esneklik kazandırıcı kısımlar da ilave edilebilmektedir. Kablonun üzerine yerleştirilen bu koruyucu tabaka aynı zamanda kemirgenlerin ısırmalarına engel olmak için özel kimyasal maddeler içerir. Bu maddeler kemirgenlerin kabloyu ısırdıklarında tiksinerek kabloyu koparmalarına engel olur.
Şimdide konunun detaylarına inelim
1.1. FİBER OPTİK KABLO NEDİR?
Bilgi taşıyıcısı olarak ışığın kullanıldığı iletişim sistemleri,son zamanlarda oldukça ilgi görmektedir. Bu bölümde daha ileride göreceğimiz gibi,ışık dalgalarını yeryüzü atmosferinde yaymak zor ve elverişsizdir. Dolayısıyla,günümüzün önde gelen çeşitli ve geliştirme laboratuarlarında,bir ışık dalgasını “içermek” ve bu dalgayı bir kaynaktan bir varış yerine göndermek üzere cam ya da plastik fiber kabloların kullanıldığı sistemlerle ilgili araştırmalar yapılmaktadır. Güdümlü bir fiber optik aracılığıyla bilgi taşıyan iletişim sistemlerine fiber optik sistemler denmektedir.
1.2. FİBER OPTİK KABLONUN AVANTAJLARI:
1.2.1. Geniş Band Aralığı
Yapıları gereği optik frekanslar daha geniş bant genişlikleri sağladıkları için, fiber sistemler daha büyük bir kapasiteye sahiptir. Metalik kablolarda, iletkenler arasında kapasitans ve iletkenler boyunca indüktans meydana gelir. Bu özellikler metalik kabloların, bant genişliklerini sınırlayan alçak geçiren filtreler gibi hareket etmelerine neden olur.
1.2.2. Elektromagnetik Bağışıklık
Fiber sistemler, manyetik indüksiyonun neden olduğu kablolar arası karışmadan etkilenmezler. Cam ya da plastik fiberler elektriği iletmeyen malzemelerdir; bu nedenle fiber optik kablolarda, akım akışının meydana getirdiği manyetik alan yoktur. Metalik kablolarda, karışmanın başlıca nedeni birbirine yakın yerleştirilmiş iletkenler arasındaki manyetik indüksiyondur.
1.2.3. Karışma (Diyafoni) Olmaması
Fiber kablolar, yıldırımın, elektrik motorlarının, floresan ışığın ve diğer elektriksel gürültü kaynaklarının neden olduğu statik karışmadan etkilenmezler; bunun bir nedeni de, fiber optiklerin elektrik iletmeme özelliğidir. Ayrıca, fiber kablolar enerji yaymazlar; dolayısıyla, diğer iletişim sistemleriyle girişime yol açmaları mümkün değildir. Bu özellik, fiber sistemleri askeri uygulamalara çok uygun hale getirir; askeri uygulamalarda, nükleer silahların etkileri (EMP, elektromanyetik darbe girişimi), klasik iletişim sistemleri üzerinde çok kötü sonuçlar yaratır.
1.2.4. Çevre Koşullarına Karşı Direnç
Fiber kablolar, çevre koşullarındaki büyük değişikliklere karşı daha dirençlidir. Metalik kablolara oranla daha geniş bir sıcaklık aralığında çalışabilirler. Aynı şekilde fiber kablolar, aşındırıcı sıvılardan ve gazlardan daha az etkilenirler.
1.2.5. Tesis Kolaylığı
Fiber kabloların monte edilmesi ve bakımı daha kolay ve daha güvenlidir. Cam ve plastik fiberler iletken olmadıkları için, fiberler kullanıldığında elektrik akımları ya da gerilimlerinin yarattığı tehlikeler yoktur. Fiberler, hiçbir patlama ya da yangın tehlikesi oluşturmaksızın, uçucu sıvıların ya da gazların çevresinde kullanılabilirler.
Fiberler, metalik kablolardan daha küçük ve çok daha hafiftir. Dolayısıyla, fiber kablolarla çalışmak daha kolaydır. Ayrıca, fiber kablolar daha az saklama alanı gerektirir ve daha ucuza nakledilebilir.
1.2.6. Güvenilirlik
Fiber kablolar bakır kablolara oranla daha emniyetlidir. Kullanıcının haberi olmaksızın fiber kablonun içine kaçak veya gizli bir bağlantı yapmak imkansızdır. Bu da fiberi, askeri uygulamalar açısından cazip kılan bir başka niteliğidir.
Henüz kanıtlanmamış olmasına rağmen, fiber sistemlerin metalik malzemede daha uzun süre dayanacağı varsayılmaktadır. Bu varsayımın dayanak noktası, fiber kabloların çevre koşullarındaki değişikliklere daha dayanıklı olmasıdır.
1.2.7. Maliyet
Fiber optik bir sistemin uzun vadeli maliyetinin, metalik bir sistemin uzun vadeli maliyetinden daha az olacağı düşünülmektedir.
1.3. FİBER OPTİK KABLONUN DEZAVANTAJLARI
• Mevcut şebekeye ayarlanmasında zorluklar çıkmaktadır. (bakır devre ve fiberin uyuşmaması)
• Digital ve analog sistemlerin uyuşmaması
• Fiber fiyatlarının yeteri kadar ucuz olmaması. Ancak kısa zamanda ucuzlaması muhtemeldir. tlk fiber kablodan buyana (sistem + kablo) ıso ucuzlamış durumdadır. Uzun mesafe irtibatlarında ise fiber optik sistemler konvansiyonel fiber ve bakır kabloların ekonomik karşılaştırılmasında bant genişliği veya kanal maliyeti de dikkate alınmalıdır.
• Local şebekelerde fiber optik kabloya olan ihtiyaç fazla olmadığından local şebekede kullanılacak teçhizat geliştirme çalışmaları yavaş yavaş yürütülmektedir. Mevcut teçhizatlar ise çok pahalıdır.
• Fiber optik kabloların pratikte 5 km den kısa mesafelere çekilmesi ekonomik değildir.
1.4. OPTİK FİBERLERİN KULLANIM ALANLARI
Optik iletişim sistemleri; büyük olanaklar sağlaması nedeniyle kısa sürede çok geniş kullanım alanları bulmuştur. Bu sistemin kullanıldığı çeşitli alanlar aşağıda sıralanmıştır.
• Zayıflamanın az, bant genişliğinin büyük, kanal başına düşen maliyetin düşük olması nedeni ile, uzun mesafeli büyük kapasiteli haberleşme sistemlerinde ve orta mesafeli küçük kapasiteli sistemlerde,
• Hem örneksel hem sayısal iletime olanak sağlaması ve geniş bantlı servis verebildiğinden özellikle santraller arası (jonksiyonlu) bağlantıda,
• Düşük kayıp, yüksek hız nedeni ile bina içlerindeki iletim sistemlerinde (plastik fiberlerle),
• Kapalı devre televizyon sistemlerinde,
• Veri (data) iletiminde,
• Elektronik aygıtların birbirleriyle bağlantısında,
• Havacılık alanında (radar), yüksek hız gerektiren aygıtlar arası ve uçak iç donanımlarında,
• Demiryolu elektrifikasyon ve sinyalizasyon uygulamalarında,
• Yüksek gerilim iletkenlerinin içine fiber damarlar yerleştirilerek iletkenlerin, enerji taşırken aynı anda haberleşmeyi de sağlamasında,
• Trafik kontrol sistemlerinde,
• Reklam panolarında,
• Tıp alanında kullanılan aygıtlarda,
• Nükleer enerji santrallerin ve radyo aktif ışınların iletişimi bozduğu yerlerde kullanılırlar.
1.5. FİBER TÜRLERİ
– Plastik çekirdekli, plastik koruyucu zarflı
– Cam çekirdekli, plastik koruyucu zarflı(çoğunlukla PCS fiber denirlastik koruyucu zarflı silika.)
– Cam çekirdekli, cam koruyucu zarflı(çoğunlukla SCS denir:silika koruyucu zarflı silika.)
Plastik fiberlerin cam fiberlere oranla çeşitli avantajları vardır. Birincisi, plastik fiber daha esnektir ve bu nedenle camdan daha dayanıklıdır. Monte edilmeleri kolaydır, basıca daha dayanıklı ve daha ucuzdurlar; üstelik cama oranla %60 daha hafiftirler. Plastik fiberin dezavantajı, yüksek zayıflama özelikleridir; ışığı cam kadar verili yayamazlar. Dolayısıyla, plastik fiberlerin kullanımı nispeten kısa mesafelerle (örneğin,tek bir bina ya da bir bina kompleksi dahili) sınırlıdır.
Cam çekirdekli fiberler düşük zayıflama özellikleri sergilerler. Ancak, PCS fiberler SCS fiberlerden biraz daha iyiyidir. Ayrıca, PCS fiberler yayılımdan daha az etkilenirler; dolayısıyla, askeri uygulamalar açısından daha caziptirler. SCS fiberler en iyi yayılım özelliklerine sahiptir ve sonlandırılmaları. PCS fiberlere oranla daha kolaydır. Ne yazık ki, SCS kablolar en dayanıksız kablolardır ve yayılıma maruz kaldıklarından en fazla zayıflama bu kablolarda meydana gelir.
Fiber optik kablolarla normal kabloları kıyasladığımızda işin teknik yönü ve sağladığı avantajlar dışında maliyet açısından fiberlerin çok daha pahalı olduğunu görürüz ancak kısa mesafeler için (1-5 km) ya da bilgi taşıma kapasitesi bakımından fiberlerde kullanılan malzemeyle oynamak suretiyle hem fiyat uygunluğu hem de ihtiyaca cevap vermek mümkün olmuştur.
Fiberleri sınıflandırılırken ilk önce 2’ye ayrılırlar; kapasitesine göre ve yapısına göre; yapısına göre 3’e ayrılırlar:
1.5.1. Cam Fiberler
Nüvesi ve kılıfı camdan imal edilir. Veri iletimi açısından en iyi performansı gösterir. Yapımında kullanılan cam ultra saf silikon dioksit veya kuartz kristalidir. malat aşamasında indisi azaltmak için, flor veya bor, indisi artırmak için, germanyum veya fosfor ile katkılanır.
1.5.2. Plastik Kaplı Silisyum Fiber
Cam nüveye plastik kılıfa sahiptirler. Fiyat olarak cam fiberlere göre daha ucuz ama performans açısından daha verimsizdir.
1.5.3. Plastik Fiberler
En ucuz fiber tipidir. Nüvesi de kılıfı da plastiktir. Performansı en zayıf fiyatı en uygun fiberdir genelde kaplamaları yoktur. Kısa mesafe iletişimi için uygundur.
Fiber optik kabloların nüve tipine göre sınıflandırılmasından ve fiber karakteristiklerinden bahsedecek olursak önce yapılacak sınıflandırma kırılma indis profiline göre yapılacağı için kırılma indis profiline değinmek gerekir. Kırılma indis profili nüve kılıf indisleri arasındaki ilişkiyi tanımlar. İki tip kırılma indisi vardır. Kademeli indis ve dereceli indis. Bunu şöyle açıklayabiliriz; Bir kademeli indis fiberin uç kesitine baktığımızda düz bir kesit görürüz. Bunun yorumu fiber nüvesinin her noktasında aynı indis değerinin olduğudur. Yani enjekte edilen ışık nüvenin her yerinde aynı dirençle karşılaşır. Dolayısıyla bildiğimiz sıradan yansıma kurallarına göre nüve içerisinde yansıyarak ilerler. Buna göre nüve tipine göre ikiye ayırabilir fiber optik kabloları:
1.5.4. Dereceli İndis Fiber
Aynı kesit dereceli indis fiberden alınacak olursa nüvenin dışa doğru tıpkı bir dış bükey mercek gibi yay çizdiği görülür. Bunun anlamı ise nüvenin çok sayıda farklı yoğunluklarda cam tabakadan oluştuğudur. Bu durumda ışık nüve içerisinde kabaca bir sinüs dalgası çizerek ilerler.
1.5.5. Kademeli İndis Fiber
Çok modlu kademeli indis fiber en basit fiber tiplerinden biridir 100 – 970µm arasında bir nüve çapına sahiptir. Nüve çapının daha fazla olması daha fazla mod taşınması açısından faydalıdır. Ancak modal yayılma en çok bu tip fiberde olur. Yayılma km başına 15-30 nano saniye olur. Rakam saniyenin milyarda 15- 30 u gibi görünebilir ama bütün kodlama sistemlerinde hataya sebep olacak düzeydedir. Kabul edilebilir yayılma miktarı km de 1 ns dir. Işık nüve içinde dereceli indis fiber gibi sinüs dalgaları çizmek yerine tam yansıma kurallarına bağlı zig zaglar çizerek ilerler.
2. FİBER OPTİK KABLONUN ÇALIŞMASI
Fiberin çalışma prensibi temel optik kurallarına dayanır. Bir ışın demeti az yoğun bir ortamdan daha yoğun bir ortama geçerken geliş açısına bağlı olarak yansıması ( tam yansıma) yada kırılarak ortam dışına çıkması (bu istenmeyen durumdur) mantığına dayanır.
Öncelikle fiber optik kablonun yapısına bir göz atalım. Kablo 3 kısımdan oluşur.
Nüve: Işığın içerisinde ilerlediği ve kablonun merkezindeki kısımdır. Çok saf camdan yapılmıştır ve esnektir. Yani belirli sınırlar dahilinde eğilebilir cinsine göre çapı tek modlu veya çok modlu oluşuna göre 8 mikrometre ile 100 mikrometre arasında değişir (not: insan saçı 100 mikro metre civarındadır).
Kılıf: Tipik olarak 125 mikrometre çapında nüveyi saran ve fibere enjekte edilen ışının nüveden çıkmasını engelleyen kısımdır aynı nüve gibi camdan yapılmıştır ancak indis farkı olarak yaklaşık %1 oranında daha azdır bu indis farkından dolayı ışık ışını nüveye enjekte edildikten sonra kılıfa geçmez (aşırı bir katlanma ya da ezilme yoksa) ışın kılıf nüve sınırından tekrar nüveye döner ve böyle yansımalar dizisi halinde nüve içerisinde ilerler.
Kaplama:Optik bir özelliği olmayan kaplama polimer veya plastik olabilir bir veya birden fazla katmanı olabilir. Optik bir özelliği yoktur sadece fiberi darbe ve şoklardan korur.
2.1. Işın Demetinin Fibere Enjekte Edilmesi
Gönderilecek ışın yada sinyal fiberin nüvesine enjekte edilir. Ancak fiber içerisinde kılıfa geçmemesi için belirli bir açı dahilinde nüveye girmeli ki nüve kılıf sınırından tam yansıma yapabilsin bu açıya kritik açı denir. Hesaplanması aşağıdaki gibidir.
Şekildeki kabul konisi olarak görülen bölüm kritik açının oluşturduğu ve tamamen fiber kablonun parametrelerine göre değişebilen bir konidir. Bu açılardan küçük gelen her ışın demeti fibere girer. Formüldeki n1 nüve n2 kılıf indisleridir.
2.2.IŞIĞIN DALGA BOYLARI VE SPEKTRAL GENİŞLİK
Her ışının bir dalga boyu vardır. Bu dalga boyu ışığın görünür- görünmez yada elektromagnetik spektrumda nerede ve ne özellikte olduğunu belirler. Örneğin infrared (kızıl ötesi) ışınlar insan gözünün algılayabileceği sınırın altındadır.
Bir ışın demetinin nüve içerisinde ilerleme hızı dalga boyuna bağlıdır. Örneğin mor olan yani mor renkli ışığın dalga boyu 455 nm, kırmızı ışığın dalga boyu 620 nm. Bunun anlamı bu iki ışın fiber içinde aynı hızla ilerlemez. Kırmızı ışın aralarındaki dalga boyu farkı kadar daha hızlı ilerler (her saykılda). Işığın bu özelliği fiber optik iletimde bir dezavantaj olarak geri döner(modal yayılma olarak).
2.3. MOD
Mod genel olarak bir fibere enjekte edilen her ışın şeklinde tanımlanabilir ve kısmen fiberin bilgi taşıma kapasitesini ifade eder. Her fiberin taşıyabileceği mod sayısı nüvenin çapına ve yapısına bağlıdır. Fiberin iletebileceği mod sayısı için ilk önce normalize olmuş nümerik açıklık frekansı (V) bulunur. Daha sonra iletilebilecek mod sayısı (N) bulunur.
2.4. MODAL YAYILMA
Aynı anda fibere enjekte edilen ışınlar fiber sonuna farklı zamanlarda ulaşırlar buna modal yayılma denir ve sadece çok modlu fiberlerde meydana gelir. Modal yayılmayı azaltmanın 3 yolu vardır:
• Kullanılacak fiberi daha az moda izin verecek şekilde seçmek, dolayısıyla daha dar bant genişliğine katlanmak
• Dereceli indis fiber kullanmak: dereceli indis fiber kullanıldığında bütün ışınlar dalga boyu ne olursa olsun nüvenin yapısından dolayı aynı yolu izleyeceklerdir. Bu en etkili yöntemdir. Bant genişliği açısından da kısıtlama getirmez.
• Tek modlu fiber kullanmak bu tip fiberde yalnız tek mod bulunduğundan bir gecikme söz konusu olmaz.
2.5. MALZEME YAYILMASI
Farklı dalga boyları (renkler) fiber nüvesi içerisinde farklı hızlarda hareket eder. Ancak farklı ortamlarda da ortama göre de farklı hızlarda hareket eder. Işık hızının malzeme (nüve) içerisindeki hızı hem nüve malzemesine hem de ışığın dalga boyuna bağlıdır. Malzeme özelliğinden kaynaklanan yayılmaya bu nedenle malzeme yayılması denir. Bir kaynak normalde tek bir dalga boyunda ışık yaymaz. Bir çok dalga boyundan ışık yayabilir. Bu dalga boyları aralığı spektral genişlik olarak tanımlanabilir. Spektral genişlik ledler için 35nm lazer için 2-3 nm dir. Örnekten de anlaşılacağı gibi kullanılan kaynak lazer ise malzeme yayılması çok daha az olur. Örneğin lazer kaynağımızın 850nm de çalışmasını istiyoruz. Kaynak 848 nm ile 851 nm arasında bir spektral çerçevede çalısır. 848nm deki sinyaller (kırmızımsı) 851 nm deki sinyallerden daha hızlı hareket edecektir. Ancak lede göre çok daha az bir yayılma ortaya çıkar.
2.6. ZAYIFLAMA, SAÇILMA VE ABSORBLAMA
Zayıflama ışık fiber içerisinde yol alırken meydana gelen güç kaybıdır dB/km olarak ölçülür. Plastik fiberler için 300dB/km tek modlu cam fiberler için 0,21dB/km civarındadır. Ancak ışının dalga boyu ile de ilgilidir aşağıdaki grafik bu durumu gösterir.
Zayıflamanın en fazla olduğu bölgeler 730-950 nm ve 1250-1380nm bölgeleridir. Bu bölgelerde çalışmamak daha avantajlı olur. Zayıflama iki sebepten dolayı olur; saçılma ve absorblama.
2.6.1. Saçılma
Gelen ışının yabancı bir maddeye çapmasıyla oluşan dağılma ve ışık kaybıdır Saçılma uzun dalga boyundaki ışınlarda çok daha küçük bir etkiye sahiptir. Matematiksel olarak saçılma dalga boyunun 4.kuvvetinin tersi ile orantılı olduğundan kısa dalga boyundan uzun dalga boylarına geçildikçe hızla azalır, ama asla sıfır olmaz.
Saçılma;
820nm de :2,5db
1300nm de :0,24db
1550nm de :0,012db gibi değerlerde seyreder.
2.6.2. Absorblama
Saçılmayla aynı nedenden oluşur. Temel farklılık saçılma, ışığın dağılması şeklinde bir bozuklukken, bu olayda ışığın sönümlenmesi söz konusudur. Fiber içindeki yabancı maddeler (örn: kobalt,bakır krom) absorblamaya neden olur. Kayıpların düşük olması için bu maddelerin fiberde milyarda bir düzeyinde olmalıdır.
2.7. MİKROBENT KAYIPLARI
Mikrobent kayıpları kablonun çeşitli sebeplerden bükülmesinden dolayı oluşur. Eğer ciddi boyutlarda bir bükülme varsa ışının tamamen yok olması söz konusu olabilir. Bu nedenle fiber kablolar genelde çok katmanlı korumalı imal edilir.
3. FİBER OPTİK İLETİŞİM SİSTEMİ
Şekil 12’de optik bir iletişim hattının basitleştirilmiş blok diyagramı gösterilmektedir. Hattın üç asal öğesi, verici,alıcı ve kılavuzdur.
Verici şunlardan oluşur: analog ya da sayısal bir arabirim, bir gerilim- akım dönüştürücüsü, bir ışık kaynağı ve bir kaynaktan- fibere ışık bağlayıcı.
Fiber kılavuz, ya aşırı saf cam ya da plastik bir kablodur.
Alıcı ise şunları içerir: bir fiberden ışık dedektörüne bağlaşım aygıtı, bir fotodedektör, bir akım- gerilim dönüştürücüsü, bir yükselteç ve analog ya da sayısal bir arabirim.
Fiber optik bir vericide, ışık kaynağı sayısal ya da analog bir sinyal tarafından modüle edilebilir. Analog modülasyonda, giriş arabirimi empedansları eşler ve giriş sinyal genliğini sınırlar. Sayısal modülasyonda, başlangıçtaki kaynak zaten sayısal biçimde olabilir; eğer kaynak bilgi sayısal değil de analog biçimde ise, sayısal darbe akışına dönüştürülmesi gerekir. Kaynak bilgi analog olduğunda, arabirimde ek olarak bir analog/sayısal dönüştürücü bulunmalıdır.
Gerilim- akım dönüştürücüsü, giriş devreleriyle ışık kaynağı arasında elektriksel bir arabirim vazifesi görür. Işık kaynağı, ya ışık yayan bir diyod (LED) ya da enjeksiyon lazer diyodudur (ILD). Bir LED ya da bir ILD tarafından yayılan ışık miktarı, sürme akımının miktarına eşittir. Gerilim- akım dönüştürücüsü, bir giriş sinyal gerilimini, ışık kaynağını sürmede kullanılan bir akıma dönüştürür.
Kaynaktan fibere bağlayıcı, mekanik bir arabirimdir. İşlevi, kaynaktan yayılan ışığı fiber optik kabloya bağlamaktır.
Fiber optik, cam ya da plastik fiber çekirdekten, bir koruyucu zarftan ve bir koruyucu kılıftan oluşmaktadır. Fiberden ışık dedektörüne bağlaşım aygıtı da mekanik bir bağlayıcıdır. Bu aygıtın işlevi, fiber kablodan mümkün olduğunca çok ışığı ışık dedektörüne bağlamaktır.
Işık dedektörü çoğunlukla ya bir PIN (pozitif – saf – negatif ) diyod ya da bir APD’dir (çığ fotodiyodu). Gerek APD gerekse PIN diyod, ışık enerjisini akıma dönüştürür. Dolayısıyla, bir akım- gerilim dönüştürücüsü gereklidir.
Akım-gerilim dönüştürücüsü, dedektör akımındaki değişiklikleri çıkış sinyal gerilimindeki değişikliklere dönüştürür.
Alıcı çıkışındaki analog ya da sayısal arabirim de elektriksel bir arabirimdir. Eğer analog modülasyon kullanılıyorsa, arabirim empedansları ve sinyal düzeylerini çıkış devreleriyle eşler. Eğer sayısal modülasyon kullanılıyorsa, arabirimde bir de sayısal- analog dönüştürücü bulunmalıdır.
3.1 IŞIK KAYNAKLARI
Temel olarak, fiber optik iletişim sistemlerinde ışık üretmede yaygın olarak kullanılan iki aygıt vardır : ışık yayan diyodlar (LED’ler) ve enjeksiyon lazerli diyodlar (ILD’ler). Her iki aygıtın da avantajları ve dezavantajları vardır ve birine oranla öteki aygıtın seçilmesi, sistem gerekliliklerini bağlı olarak yapılır.
3.1.1. Işık Yayan Diyodlar
Temel olarak, ışık yayan diyod (LED) yalnızca bir P-N eklem diyodudur. Çoğunlukla, alüminyum galyum arsenit (AlGaAs) veya galyum arsenit fosfit (GaAsP) gibi yarı iletken bir malzemeden yapılır. Ledler ışığın doğal emisyonla yayarlar; ışık, elektronlar ile deliklerin yeniden birleşiminin bir sonucu olarak yayılır. Diyod ileri ön gerilimli olduğunda, P-N eklemi üzerinde azınlık taşıyıcıları meydana gelir. Azınlık taşıyıcıları eklemde, çoğunluk taşıyıcıları ile yeniden birleşip, enerjiyi ışık şeklinde verirler. Bu süreç, temel olarak klasik bir diyottaki süreç ile aynıdır; aradaki fark şudur: LED’lerde belli yarı iletken malzemeler ve katkılama maddeleri, süreç ışıma yapacak (foton üretecek) şekilde seçilir. Foton, elektromanyetik dalga enerjisinin bir nicesidir. Fotonlar ışık hızında ilerleyen parçalardır, ancak durağan halde iken kütleleri yoktur. Klasik yarı iletken diyotlarda (sözgelimi, germanyum ve silisyum), süreç temel olarak ışıma yapmaz ve foton üretimi olmaz. Bir LED imal etmek için kullanılan malzemenin enerji aralığı, LED’den yayılan ışığın görünür ışık olup olmadığını ve ışığın rengini belirler.
En basit LED yapıları, sade eklemli, epitaksiyel olarak büyütülmüş veya tek dağılmış aygıtlardır. Epitaksiyel olarak büyütülmüş LED’ler, genellikle silisyum katkılı galyum arsenitle yapılırlar. Bu tür LED’den yayılan tipik bir dalga boyu 940 nm’dir; 100 mA’lik ileri yönde akımda tipik çıkış gücü ise 3 mW’tır. Düzlemsel dağılmış (sade eklemli) LED’ler 900 nm’lik bir dalga boyunda yaklaşık 500 mW çıkış yaparlar. Sade eklemli LED’lerin önde gelen dezavantajı, ışık emisyonlarının yönlü olmayışıdır; bu da bu tür diyotları fiber optik sistemler açısından kötü bir seçenek haline getirir.
Düzlemsel karışık eklemli LED, epitaksiyel olarak büyütülmüş LED’e oldukça benzer; aradaki fark, düzlemsel karışık eklemli LED’de geometrik tasarımın, ileri yönde akımı aktif katmanın çok küçük bir alanına yoğunlaştıracak şekilde yapılmış olmasıdır. Bu yüzden, düzlemsel karışık eklemli LED’lere oranla çeşitli avantajları vardır.
Bu avantajlar şunlardır:
• Akım yoğunluğundaki artış, daha parlak bir ışık spotu oluşturur.
• Emisyon yapan alanın daha küçük, yayılan ışığı bir fibere bağlamayı kolaylaştırır
• Etkili küçük alanın kapasitansı daha düşüktür; bu da düzlemsel karışık eklemli LED’lerin daha yüksek hızlarda kullanılmasını sağlar
4. FİBER OPTİK KABLOLARDA KAYIPLAR
Fiber optik kablolarda iletim kayıpları, fiberin en önemli özelliklerinden biridir. Fiberdeki kayıplar, ışık gücünde bir azalmaya neden olur ve böylece sistem bant genişliğini, bilgi iletim hızını, verimliliği ve sistemin genel kapasitesini azaltır. Başlıca fiber kayıpları şunlardır:
4.1. SOĞURMA KAYIPLARI
Fiber optikteki soğurma (yutma) kaybı, bakır kablolardaki güç kaybına benzer; fiberin saf olmaması nedeniyle fiberde bulunan maddeler, ışığı soğurur ve ısıya dönüştürür. Fiber optikleri imal etmede kullanılan aşırı saf cam, yaklaşık %99.9999 saftır. Gene de, 1 dB/km arasındaki soğurma kayıpları tipik değerlerdir.
Fiber optikteki soğurma kayıplarına yol açan üç faktör vardır: morötesi soğurma, kızılaltı soğurma ve iyon rezonans soğurması.
4.1.1. Morötesi soğurma
Morötesi soğurmaya, fiberin imal edildiği silika malzemesindeki valans elektronları neden olur. Işık, valans elektronlarını iyonize ederek iletkenlik yaratır. İyonizasyon, toplam ışık alanındaki bir kayba eşdeğerdir ve bu nedenle fiberin iletim kayıplarından birini oluşturur.
4.1.2. Kızılaltı soğurma
Kızılaltı soğurmaya, cam çekirdek moleküllerinin atomları tarafından soğurulan ışık fotonları neden olur. Soğurulan fotonlar, ısınmaya özgü rastgele mekanik titreşimlere dönüştürülür.
4.1.3. İyon rezonans soğurması
İyon rezonans soğurmasına, malzemedeki OH-iyonları neden olur. OH-iyonlarının kaynağı, imalat sürecinde camın içinde sıkışıp kalan su molekülleridir. İyon soğurmasına demir, bakır ve krom molekülleride neden olabilir.
4.2.MALZEME YA DA RAYLEIGH SAÇINIM KAYIPLARI
İmalat sürecinde, cam çekilerek çok küçük çaplı uzun fiberler haline getirilir. Bu süreç esnasında, cam plastik haldedir(sıvı ya da katı halde değil). Bu süreç esnasında cama uygulanan germe kuvveti, soğuyan camda mikroskopla görülmeyecek kadar küçük düzensizliklerin oluşmasına neden olur;bu düzensizlikler fiberde kalıcı olarak oluşur. Işık ışınları, fiberde yayınım yaparken bu düzensizliklerden birine çarparsa kırınım meydana gelir. Kırınım,ışığın birçok yönde dağılmasına ya da saçılmasına yol açar. Kırınım yapan ışığın bir kısmı fiberde yoluna devam eder, bir kısmı da koruyucu zarf üzerinden dışarı kaçar. Kaçan ışık ışınları, ışık gücünde bir kayba karşılık gelirler. Buna Rayleigh saçınım kaybı denir.
4.3. RENK YA DA DALGA BOYU AYRILMASI
Daha önce de belirtildiği gibi, bir ortamın kırılma indisi dalga boyuna bağlıdır. Işık yayan diyodlar(LED’ler) çeşitli dalga boylarını içeren ışık yayarlar. Bileşik ışık sinyalindeki her dalga boyu farklı bir hızda ilerler. Dolayısıyla, bir LED’den aynı zamanda yayılan ve fiber optikte yayınım yapan ışık ışınları, fiberin en uç noktasına aynı anda ulaşmazlar. Bunun sonucu olarak, alma sinyalinde bozulma meydana gelir; buna kromatik bozulma denir.
4.4. YAYILIM KAYIPLARI
Yayınım kayıplarına, fiberdeki küçük bükümler ve burulmalar neden olur. Temel olarak, iki tür büküm vardır:mikro büküm ve sabit yarıçaplı büküm. Mikro büküm, çekirdek malzemesi ile koruyucu zarf malzemesinin ısıl büzülme oranları arasındaki farktan kaynaklanır. Mikro büküm, fiberde Rayleigh saçınımının meydana gelebileceği bir süreksizlik oluşturur. Sabit yarı çaplı bükümler, fiberin yapımı ya da monte edilmesi sırasındaki bükülmeler sonucu meydana gelir.
4.5. MODAL YAYILMA
Modal yayılmanın ya da darbe yayılmasının nedeni, bir fiberde farklı yollar izleyen ışık ışınlarının yayınım sürelerindeki farktır. Modal yayılmanın yalnızca çok modlu fiberlerde meydana gelebileceği açıktır. Dereceli indeksli fiberler kullanılmak suretiyle modal yayılma önemli ölçüde azaltılabilir; tek modlu kademe indeksli fiberler kullanıldığında ise hemen hemen bütünüyle bertaraf edilebilir.
Modal yayılma, bir fiberde yayınım yapmakta olan bir ışık enerjisi darbesinin yayılarak dağılmasına neden olabilir. Eğer darbe yayılması yeterince ciddiyse, bir darbe bir sonraki darbenin tepesine düşebilir(bu, semboller arası girişime bir örnek oluşturmaktadır). Çok modlu kademe indeksli bir fiberede, doğrudan fiber ekseni üzerinden yayınım yapan bir ışık ışını,fiberi bir ucundan diğer ucuna en kısa sürede kat eder. Kritik açıyla çekirdek/koruyucu zarf sınırına çarpan bir ışık ışını, en çok sayıda dahili yansımaya maruz kalacak. Dolayısıyla fiberi bir ucundan diğer ucuna en uzun sürede kat edecektir.
4.6. BAĞLAŞIM KAYIPLARI
Fiber kablolarda, şu üç optik eklem türünden herhangi birinde bağlaşım kayıpları meydana gelebilir:ışık kaynağı-fiber bağlantıları, fiber-fiber bağlantıları ve fiber fotodedektör bağlantıları. Eklem kayıplarına çoğunlukla şu ayar sorunlarından biri neden olur:yanal ayarsızlık, açısal ayarsızlık, aralık ayarsızlık ve kusursuz olmayan yüzey.
4.6.1. Yanal Ayarsızlık
Yanal ayarsızlık, bitişik iki fiber kablo arasındaki yanal kayma ya da eksen kaymasıdır. Kayıp miktarı, bir desibelin beş ila onda biri ile birkaç desibel arası olabilir. Eğer fiber eksenleri, küçük fiberin çapının yüzde beşi dahilinde ayarlanmışsa, bu kayıp ihmal edilebilir.
4.6.2. Açısal Ayarsızlık
Açısal ayarsızlığa bazen açısal yer değiştirmede denir. Açısal ayarsızlık ikiden az ise, kayıp 0.5 desibelden az olur.
4.6.3. Aralık Ayarsızlığı
Aralık ayarsızlığına bazen uç ayrılması da denmektedir. Fiber optiklerde ekler yapıldığında, fiberlerin birbiri ile temas etmesi gerekir. Fiberler birbirinden ne kadar ayrı olursa, ışık kaybı o kadar fazla olur. İki fiber birbirine bağlantı parçasıyla birleştirilmişse, uçlar temas etmemelidir. Bunun nedeni, iki ucun bağlantı parçasında birbiri ile sürtünmesinin fiberlerden birine ya da her ikisine birden hasara yol açabilecek olmasıdır.
4.6.4. Kusursuz Olmayan Yüzey
İki bitişik kablonun uçlarının bütün pürüzleri giderilmeli ve iki uç birbirine tam olarak uymalıdır. Fiber uçların dikey çizgiden açıklıkları 3’den az ise, kayıpların 0.5 desibelden az olur.
5. FİBER OPTİK DÜZENLEMELERİ
5.1. ÇOK MODLU KADEME İNDEKSLİ FİBER
Çok modlu kademe indeksli düzenleme, tek modlu düzenlemeye benzer; aradaki fark, merkezi çekirdeğin çok daha geniş olmasıdır. Bu fiber türü, daha geniş bir ışık-fiber açıklığına sahiptir, dolayısıyla kabloya daha çok ışık girmesine imkan verir. Çekirdek / koruyucu zarf arasındaki sınıra kritik açıdan daha büyük bir açıyla çarpan ışık ışınları , çekirdekteki zikzak şeklinde yayınım yapar ve sürekli olarak sınırdan yansırlar. Çekirdek / koruyucu zarf sınırına kritik açıdan daha küçük bir açıyla çarpan ışık ışınları, koruyucu zarfa girer ve yok olurlar. Fiberde yayınım yaparken, bir ışık ışınının izleyebileceği çok sayıda yol olduğu görülebilir. Bunun sonucu olarak, bütün ışık ışınları aynı yolu izlemez, dolayısıyla fiberin bir ucundan diğer ucuna olan mesafeyi aynı zaman süresi süresi içinde kat etmezler.
5.2. ÇOK MODLU DERECELİ İNDEKSLİ FİBER
Dereceli indisli çok modlu fiberin yapısındaki çekirdeğin indisi yarı çapa bağlı olarak değişir. Yani dışarıdan bakıldığında (çok hassas ve güçlü mikroskoplarla) içten dışa doğru eşmerkezli halkalar halindedir. Bu halkaların her birinin kırılma indeksi farklıdır ve içten dışa doğru gidildikçe kırılma indisi düşer. Yani tam merkezde en büyük indeks, en dışta ise en küçük indeks bulunur. Bu katmanların sayısı imalatçı firmaya göre değişir. Genellikle bu katmanların sayısı 50-400 arasındadır. Merkezde direkt olarak giden ışık az yol alır ancak burada indeks büyüktür. Daha dış katmanlarda giden ışıkların aldıkları yol daha fazladır ancak bu katmanlarda indeks küçük olduğundan ışığın hızı indeks profili ile ters orantılı olarak değişir. Dolayısıyla tüm ışıklar belli düğüm noktalarında birleşirler ancak alıcı uçta darbeler arasında bir gecikme olur. Buna rağmen gecikme basamak indeksli ve çok modlu fiberlerinkine göre daha azdır.
5.3. TEK MODLU KADEME İNDEKSLİ FİBER
Tek modlu kademe indeksli fiber, yeterince küçük bir merkezi çekirdeğe sahiptir; öyle ki, temel olarak ışığın kabloda yayınım yaparken izleyebileceği tek bir yol vardır. En basit tek modlu kademe indeksli fiber biçiminde, dıştaki koruyucu zarf havadır. Cam çekirdeğin kırılma indisi yaklaşık 1.5’tir,hava koruyucu zarfının kırılma indisi ise 1’dir. Kırılma indislerindeki büyük fark, cam/hava sınırında küçük bir kritik açı (yaklaşık 42 derece) oluşturur. Dolayısıyla fiber, geniş bir açıklıktan gelen ışığı kabul eder. Bu da, ışığı kaynaktan kabloya bağlamayı nispeten kolay hale getirir. Ancak bu tür fiber, tipik olarak çok zayıftır ve pratikte bu fiberin kullanımı sınırlıdır.
Tek modlu kademe indeksli fiberin daha kullanışlı türü, koruyucu zarf olarak hava yerine başka bir malzemenin kullanıldığı türdür .Koruyucu zarfın kırılma indisi merkezi çekirdeğin kırılma indisinden biraz daha azdır ve koruyucu zarf boyunca sabittir. Bu tür kablo, fiziksel olarak hava koruyucu zarflı kablodan daha güçlüdür, ancak kritik açısı da çok daha yüksektir(yaklaşık 77 derece). Kritik açının bu kadar yüksek olması, kabul açısının küçük, kaynak-fiber açıklığının ise dar olmasına yol açarak ışığı ışık kaynağından fibere bağlamayı güçleştirir.
Her iki tür tek modlu kademe indeksli fiberde de, ışık fiberede yansıma yoluyla yayınım yapar. Fibere giren ışık ışınları, çekirdekte doğrudan yayınım yaparlar ya da belki bir kez yansırlar. Dolayısıyla, bütün ışık ışınları kabloda yaklaşık aynı yolu izler ve kablonun bir ucundan diğer ucuna olan mesafeyi yaklaşık aynı sürede kat ederler. Bu, tek modlu kademe indeksli fiberlerin çok önemli avantajlarından biridir.
6. FİBERLERDE ARA BAĞLANTI KABLOSU VE KONNEKTÖRLER
6.1. Ara Bağlantı Kablosu (pig-tail)
Fiber damardaki optik sinyalin damardan sisteme veya sistemden damara geçiş yapılabilmesi için kullanılan ve bir ucunda birleştirici yani konnektör bulunan, sıkı tüplü olarak üretilmiş içinde yalnız tek bir fiber damar bulunan özel kablolardır. 3-10 m uzunluğunda üretilmektedir.
6.2. Konnektör
Sistemden alınan optik sinyalin en az kayıpla fiber damara geçmesini (vida veya geçme yöntemiyle tutturularak) sağlayan malzemelerdir. Optik fiber ara bağlantı kablolarının bir ucunda bulunur.
6.3. Çıplak Fiber Adaptörü
Optik fiber ara bağlantı kablosu bağlantısı yapılmadığı durumlarda (geçici olarak) optik sinyalin geçişini sağlamak için kullanılır. Fiber adaptörünün vidalı veya geçme kısmı sistem veya U linke bağlanırken diğer kısmı düzgün kesilmiş çıplak fiber damarı gerip sıkıştırarak ileri -geri hareketinin engelleyecek şekilde yapılmıştır. Birleştiriciden farklı bir kaynak yapma ve sınırlı esneklik gibi olumsuz yönleri olmayıp istenildiği an fiber damardan ayrılabilir. Değişik yapıda olanları mevcuttur.
6.4. U Link
Konnektörleri veya çıplak fiber adaptörlerini (fiziksel olarak) karşı karşıya getirerek ışıksal sinyalin bir noktadan diğer bir noktaya geçişini sağlayan malzemedir
Bu geçiş, bir damardan diğer bir damara, damar ile sistem arasında veya ayrı iki sistyem arasında oalbilir. Sabit ve esnek olarak kullanılabilen değişik yapıda olanları bulunmaktadır.
6.5. Zayıflatıcılar (optik potlar)
Optik zayıflatıcı; sistemin çalışma sınırından daha çok, gelen optik gücünü düşürmek için kullanılır. Zayıflatıcılar sinyali 0-25 dB’ ye kadar zayıflatabilir.
Zayıflatma gelen ışık ile giden ışık arasındaki geçiş aralığını azaltarak veya çoğaltarak geçen ışığın miktarını ayarlama ilkesine dayanır. İstenilen zayıflatma değeri (sistemin çalışma sınırları) elde edilince zayıflatıcı üzerindeki ayar vidası ile sabitlenir. Yapısı çift konnektörlü olup optik ara bağlantı kablosu(pig-tail) gibidir.
7. DÜNYADA VE TÜRKİYE’DE FİBER VE BAKIR
Dünyadaki bakır rezervlerinin gün geçtikçe eksilmesi ve bant genişliği ihtiyacının her geçen yıl akıl almaz hızla artması, kullanıcıları hız bağımsız fiber optik kablo kullanmaya yöneltmesi bekleniyor.
Çok değil beş yıl öncesine kadar Türkiye’de kurulan birçok network altyapısı herhangi bir standarda sahip olmayan kablolar kullanılarak yapılırdı. Tabi bu kablolamanın herhangi bir testi de olamazdı. Nerden nereye geldik, evrensel kablolamadan bahsettiğimiz günümüzde, birçok yeni yatırım ve yeni teknoloji gelecekte bizleri bekliyor.
1995 yıllarının başında Kategori3 ve 4‘lerden vazgeçildi. Gerçek data kablosu olarak üretilen ve birçok kuruluşun belirlemiş olduğu standartlara uygun kablolar kullanılarak network altyapıları yapılmaya başlandı. Genelde Avrupa’da geçerli sertifikaları veren ISO, bu üretilen kabloya Kategori5 adını verdi ve standardını da ClassD95 ile ifade etti. ISO/IEC 11801 standardı ile üretilen bu kablolama altyapısında, uygulamalardan bağımsız hem ses hem de datanın kolaylıkla geçebileceği bant genişliğine ulaşılabildi. Spesifikasyonları belirli olan bu kabloda artık testler yapıp uygunluğu da üretici firmalar tarafından onaylanabilecek bir mekanizma otomatikman oluşmuş oldu. Sistemlere onbeş yıllık sistem-performans garantisi verilebildi. Sistem- performans garantisi testlerini ve altyapı hizmetlerini verebilen kuruluşlara da yetkili kurucu sertifikaları verildi.
Bilgisayar sistemlerinin gelişmesi ve bant genişliği ihtiyacının hızla artması ile ClassD95 standartları artık bu ihtiyaçlara cevap veremez duruma geldi. 99 yıllarının başında ISO yeni bir standart olan Kategori5E (Enhanced) ClassD99’un duyurusunu yaptı. Bu standart ile artık ClassD95’te kullanılamayan Full-duplex uygulamalar iki kat hız ile kullanılmaya başlandı. Artık verilecek olan onbeş yıl sistem-performans garantisi ClassD99 testleri yapıldıktan sonra verilebiliyordu.
2000’li yılların başında ise aktif cihaz üreticileri teknolojilerini hızla geliştirdiler. Uygulamalarda Gigabit altyapısına geçildi, Internet-intranet, VoIP, Videokonferans uygulamaları aynı altyapı üzerinde koşturulması isteği ortaya çıktı. Standartları belirli olan ClassD99 bu ihtiyaçlara cevap veremez duruma geldi. Dünyada büyük kablo üreticileri yeni bir teknoloji geliştirerek bu ihtiyaçları karşılama yolunda çalışmalara başladı. Category6 olarak adlandırılan bu kablo ile ClassE serisine geçilmiş oldu. Artık kurulacak olan omurga, gigabit altyapısıyla hızlandı ve 1000BaseT uygulamalar bu kablo üzerinde koşturulabiliyor duruma geldi. Büyük sistem kullanıcıları yüksek bant genişliği isteyen uygulamalarda bu kabloyu kullanmak zorunda olduklarından Türkiye’de ve dünyada kullanım payı hızla gelişmektedir. Ancak Category6 kablonun standartları henüz ISO tarafından belirlenmiş değil. 2001 yılı sonlarına doğru standartlarının belirlenmesi bekleniyor.
Evrensel kablolamada yüksek bant genişliği ihtiyacı her geçen gün hızla artıyor ve kullanıcılar hızla altyapılarını yenileme yoluna gidiyorlar. Önümüzdeki üç yıl içerisinde artık masaya kadar Gigabit koşturulacağı gerçeği, üreticileri heyecanlandırıyor. Bu yüzden ClassF çözümleri olan Kategori7 birçok büyük üretici tarafından tasarlandı hatta üretime geçildi.
Önümüzdeki beş yıl içerisinde yapısal kablolama bakır çözümleri ile fiber optik ürünlerinin büyük bir rekabete gireceği gerçeği günümüzde oldukça taraftar buluyor. Dünyadaki bakır rezervlerinin gün geçtikçe eksilmesi ve bant genişliği ihtiyacının her geçen yıl akıl almaz hızla artması, kullanıcıları hız bağımsız fiber optik kablo kullanmaya yönelteceği bekleniyor. Fiber to Desk çözümlerinin şu an bile çok konuşulan bir konu olduğu bir gerçek.
8. FİBER KABLO ÖRNEKLERİ
9.1. ISO/IEC 11801’DE BELİRTİLEN OPTİK FİBER TİPLERİ